Einflussquellen der Messunsicherheit auflisten

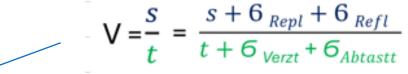
Modellgleichung aufstellen

Beträge ermitteln

Art der Wahrscheinlichkeitsdichteverteilung (WDF) ermitteln, hieraus die Gewichtung (*G*) ableiten

Sensivitätskoeffizienten (*C*) berechnen und Freiheitsgrade (*V*) bestimmen

Finale Berechnung durchführen



6 _{Rep s} =	0,2	mm
6 _{Ref s} =	0,1	mm
$6_{\text{verz t}} =$	5,00E-05	s
6 Abtast t =	5,00E-05	s

Normverteilung $\sqrt{G} = 1$;Rechteckverteilung $\sqrt{G} = \sqrt{\frac{1}{3}}$;Dreiecksverteilung $\sqrt{G} = \sqrt{\frac{1}{6}}$

$$c_s = \frac{dV}{ds} \sim \frac{1}{t}$$

 $\frac{V}{t} \sim \frac{S}{-t^2}$

Rechteckverteilung/Dreiecksverteilung $V = \infty$ Normalverteilung -> V = Anzahl der Messungen

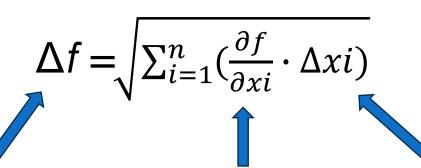
Freiheitsgrade (Prüfung auf Normalverteilung)

$$U_{k=2} = \sqrt{u_{Repl}^2 + u_{Refl}^2 + u_{verz\,t}^2 + u_{Abtast\,t}^2}$$

Mathematische Grundlage der Messunsicherheitsberechnung

Was ist die mathematische Grundlage der Messunsicherheitsberechnung?

Natürlich die Gaußsche Fehlerfortpflanzung



"Das Ergebnis habe ich schon, jetzt brauche ich nur noch den Weg, der zu ihm führt."

Carl Friedrich Gauß (1777-1855)

Damals noch Fehler, statt Unsicherheit genannt.

Partielle Ableitung der Funktion $f(x_1, x_2, x_2 ... x_n)$ nach den einzelnen Messunsicherheitseinflüssen x_i .

Unsicherheit oder Standardabweichung der Größe (x).

Mathematische Grundlagen der Messunsicherheitsberechnung

Fehlerfortpflanzung nach Gauß

$$\Delta f = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial f}{\partial xi} \cdot xi \right)^2}$$

Heutige Berechnungsmethode der erweiterten Messunsicherheit ($U_{k=2}$) für nicht korrelierte Eingangsgrößen

$$U = k \cdot \sqrt{\sum_{i=1}^{n} (c_i \cdot \sqrt{G} \cdot x_i)^2} \rightarrow \text{ca. 95 \% Prozent der Anwendungsfälle}$$

und für korrelierte Eingangsgrößen

$$U_{k=2} = k \cdot \sqrt{\sum_{i=1}^{n} (c_i \cdot \sqrt{G} \cdot x_i)^2 + 2 \cdot \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} p_{i,j} \cdot c_i \cdot c_j \cdot \sqrt{G_i + G_j} \cdot x_i + x_j}$$

Erweiterungsfaktor (k), in der Regel ist k=2 für ein Vertrauensbereich von 95%

Sensivitätskoeffizient (c_i)

$$c_i = \frac{\partial f}{\partial x i}$$
 (Partielle Ableitung, wie bei Fehlermethode nach Gaus.)

Standardmessunsicherheit (U_i)

$$U_i = \cdot \sqrt{G} \cdot xi$$

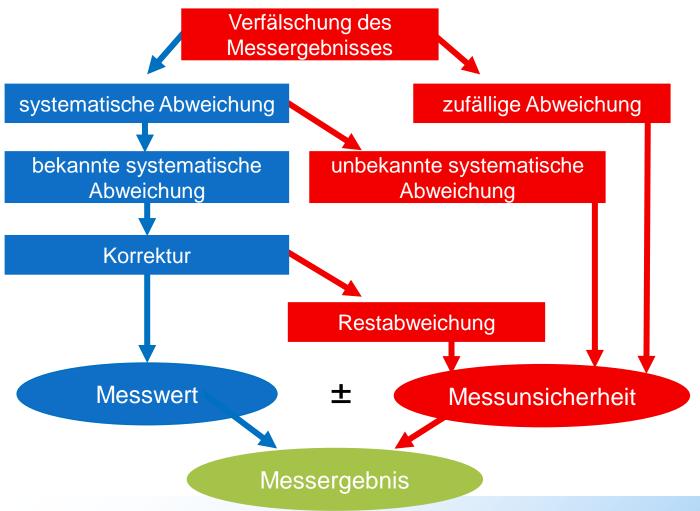
Gewichtsfaktor (\sqrt{G}) in Abhängigkeit von der Wahrscheinlichkeitsdichtefunktion

Normalverteilung $\sqrt{G} = 1$

Rechteckverteilung $\sqrt{G} = \sqrt{\frac{1}{3}} = 0,57735$

Dreiecksverteilung $\sqrt{G} = \sqrt{\frac{1}{6}} = 0.40882$

Art der Abweichung



Beispiele

systematische Abweichung

Ein falsch eingestellter Messverstärker produziert einen konstanten prozentualen Fehler.

unbekannte systematische Abweichung

Temperaturdrift eines Kraftaufnehmers

zufällige Abweichung

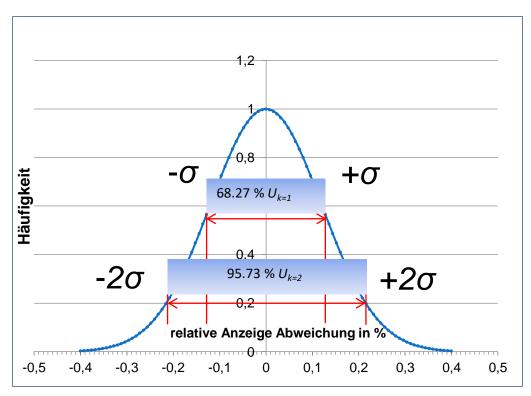
Das Rauschen eines Messignals

Restabweichung

Interpolationsfehler einer Fehlerkorrektur

Erweiterte und kombinierte Messunsicherheit

Normalverteilung



Die bei der Kraftkalibrierung ermittelte Anzeigeabweichung

Messunsicherheitsbeitrage aus Kalibrierscheinen oder anderen Bescheinigungen angegebene Werte ...

$$U_{(k=1)}$$
 \triangleq kombinierte Messunsicherheit (1 σ)

$$U_{(k=1)} = \sqrt{u_1^2 + u_1^2 + u_1^2 \dots + un^2}$$

$$U_{(k=1)} \cdot 2 \triangleq U_{(k=2)}$$
 erweiterte Messunsicherheit (2 σ)

Beispiel Kraftkalibrierung

 $\delta_{wp,KG}$ Widerhohlpräzision (Empirische Standardabweichung des Mittelwertes)

$$\delta_{wp,KG} = \frac{\sigma}{\sqrt{n}}$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

$$\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$= \frac{796 + 798 + 799 + 801 + 802}{5}$$

$$= 799,2 \text{ N}$$

$$\sigma = \sqrt{\frac{(796 - 799,2)^2 + (798 - 799,2)^2 + (799 - 799,2)^2 + (801 - 799,2)^2 + (802 - 799)^2}{(5-1)}}$$

$$\sigma$$
 = 2,39 N

$$\delta_{wp,KG} = \frac{2,39}{\sqrt{5}}$$
= 1,07 N

n = 5 (Anzahl der Messungen)

x₁ 796 N

x₂ 798 N

 X_3 799 N

X₄ 801 N

x₅ 802 N

